2025 Expert Predictions for Aerospace and Defense: AI, Sustainability, and the Next Frontier
Aerospace and defense are at the cusp of revolutionary changes, driven by advancements in artificial intelligence, autonomous systems, sustainable technologies, and digital transformation.
In part four of our annual predictions series, Vance Hilderman, CEO at AFuzion and Jama Software’s industry experts Cary Bryczek , Director of Solutions & Consulting; Karl Mulcahy, Global Sales Manager of Aerospace & Defense and Matt Macias, General Manager of Aerospace & Defense share their insights on the trends, challenges, and innovations shaping the future of aerospace and defense.
From the integration of AI in autonomous systems to the adoption of digital twins for operational efficiency and the pursuit of sustainable practices, these insights offer a glimpse into the opportunities and disruptions that lie ahead. Whether it’s navigating cybersecurity challenges or adapting to shifting geopolitical conditions, this year’s predictions provide a roadmap for industry leaders to thrive in 2025 and beyond.
We like to stay on top of trends in other industries as well. Read our predictions for Industrial & Consumer Electronics (ICE) HERE, Automotive HERE, and Semiconductor HERE – Plus, stay tuned for future topics, including Medical Device & Life Sciences, and AECO.
Editor’s Note: Responses reflect a mix of British and American English, depending on the respondent.
Question 1 – With the rising integration of AI, machine learning (ML), and autonomous systems, how do you foresee these technologies reshaping aerospace and defense operations? What are the most promising applications and potential challenges?
Vance Hilderman: AI & ML are already used for ground planning, flight plan optimization, flight deck monitoring, and assists. Militaries are using AI onboard UAVs (Unmanned Aerial Vehicle) and fighter aircraft but real-time AI on commercial aircraft is not yet allowed for safety-related operations.
Cary Bryczek: We will see an explosion in systems engineering utilizing AI. AI will not only be used to write requirements but decompose the requirements into lower-level requirements, create architecture models and establish traceability throughout. It’s beginning to happen right now! AI assistants for systems engineers will create enormous time savings so the actual engineering can be performed.
Karl Mulcahy: AI/ML I’m sure is of interest to these companies to make internal development practices more efficient, but also to enhance their offerings e.g., AI monitoring for better insights/decision making on a battlefield.
However, with ongoing security aspects a constant concern for sensitive projects within the defence world particularly, it may require more maturity and capabilities within customer environments for internal efficiency gains.
Matt Macias: The aviation industry is already demonstrating prototypes leveraging AI and autonomous operation with a large number of new and existing companies developing transformational vehicles to provide new ways for people and goods to utilize airborne mobility’s advantages. There is a strong desire to bring the consumer faster, safer and more cost-effective ways to travel. We see many new startups and innovative ideas in the work, which is very exciting. We also see a great rise in the pursuit of novel, innovative cyber-system approaches and new vehicle designs, propulsion and operations.
In the defense world we see AI/Autonomous systems enabling disruptive changes in the systems and total architectures utilized for security. These new technologies are enabling breakthroughs in new missions and exposing unexpected vulnerabilities. We saw this clearly in Ukraine with the successful use of inexpensive, modified consumer drones defeating far more expensive systems. We also see this in the changes and cancelations of some larger DOD systems programs, where there appears to be a shift in focus to very different, lower-cost systems. For example, drones that operate in a “constellation” of unique, adaptable, or “swarms” of “expendable” or essentially single-use systems that can potentially overwhelm more traditional manned or legacy systems. This is not only changing the approaches to military strategy, but it is revolutionizing the development of tomorrow’s military systems, leading (as in commercial aviation) to an explosion of new ideas and new programs. We also see a rapid growth of disruptive companies taking market share from traditional defense contractors.
All in all, this is a very exciting time for anyone who is interested in aviation, space and defense innovation.
RELATED: Buyer’s Guide: Selecting a Requirements Management and Traceability Solution for Aerospace
Question 2 – As a follow-up question: Do you have any concerns or anticipate any negative impacts as it pertains to AI & ML?
Hilderman: When used on the flight deck for real-time flight controls, it needs to be certified which is not yet possible for commercial aviation. We’re working on this.
Bryczek: I would say none to be honest. The technology is there to protect intellectual property. Perhaps the only concern I have is do we have the energy infrastructure ready to drive some of the computing power behind it all.
Macias: Currently, the most immediate negative impacts of AI & ML is the disruption of well-established commercial markets and in the case of defense, the unexpected vulnerability of military systems that we have invested heavily into ensure our security.
We don’t know yet how advanced air mobility systems might change the flow of people and goods around our cities, but it is likely that not likely in 2025. In the mid-term future, we will see disruptions as we seek new norms, such as increased noise, safety challenges, privacy challenges, etc. We can also see that the major militaries of the world are very concerned about countering the asymmetric threats autonomous systems pose to our larger defense platforms, likely to accelerate as AI is applied in the future.
Question 3 – As global demand for sustainable practices intensifies, what innovations in product design, materials, or manufacturing processes do you think will most significantly impact sustainability efforts in aerospace and defense?
Hilderman: eVTOL. [Editor’s note: Electric Vertical Take-Off and Landing (eVTOL) aircraft are a type of VTOL (Vertical Take-Off and Landing) vehicle that use electric power for vertical takeoff, landing, and hovering. Unlike traditional VTOLs, eVTOLs rely solely on electric propulsion.]
Bryczek: We are going to continue to see more research and development efforts into alternative geological materials to mitigate the need to use rare earth elements. Systems will need to be redesigned, or new systems built altogether that utilize different materials. It’s not just global political unrest that is driving this but also socio-environmental resistance to the mining/extraction process that ruin the environment.
Mulcahy: Better collaboration across teams using tools to capture outcomes, integrate data sets, and ensure better decision-making/more efficient ways of incorporating science and research into the manufacture of products.
Macias: Aerospace and Defense is an industry that has struggled greatly with achieving solutions for sustainability. A significant innovation focus is being applied to this ongoing challenge. We can see major positive impacts already in more efficient structures (increased use of carbon fiber composites and advanced designs) and advancement in the efficiency of traditional propulsion systems. In work and over the horizon there is a strong desire to harness advanced, model-based design approaches (including AI, generative design, MDO, MBSE), and advanced manufacturing automations (3D printing, advanced robotics, etc.) to enable dramatic innovations that will increase the efficiency of flight and other operations.
However, what the industry most dearly seeks is a sustainable power source for A&D systems. This will have great value as these systems consume a great deal of energy and in the case of defense systems, the cost of getting fuel to the point of need is extremely high. The challenges of electrification, sustainable aviation fuels (SAF), hydrogen propulsion, etc. continue to be a major focus of the A&D industry but also continue to present very significant challenges of affordability, reliability, power density/weight, and the logistics of fuel delivery.
Question 4 – Cybersecurity remains a top priority in aerospace and defense. What proactive steps do you believe the industry should take to strengthen security measures, particularly in software development and data management for connected and autonomous systems?
Hilderman: Mandate formal usage of DO-326A and ED-202A for cybersecurity within Avionics.
Bryczek: We already have terrific security policies and guidelines as Vance has pointed out that both the US and Europe have crafted. Developers need to be held accountable to follow security by design and to leverage zero-trust architecture. Still too often do I see security performed as an afterthought.
Macias: Security assurance is critical as we advance our use of autonomous systems and integrated data networks. This is and will remain a subject of constant focus, priority and challenge. The application of careful and advanced cybersecurity approaches must be a primary focus of all parts of the A&D system lifecycle including IP protection and security in operational data. As our systems become more intelligent and as the leverage is greater and greater computing power, this will only increase.
Question 5 – Given the shift toward digital transformation, what role do you see digital twins and simulation technologies playing in enhancing operational efficiency, project accuracy, and training in aerospace and defense?
Hilderman: Aircrafts are increasingly automated meaning less pilot involvement which means less onboard “practice;” this means simulation-based training is even more important.
Mulcahy: With more complex products being designed and worked across companies to deliver a larger product/initiative, going digital will be important to ensure alignment.
It will be important to ensure ways to share data seamlessly across tools to understand wider impacts, relationships and identify risks at an earlier stage.
Macias: The A&D industry is seeking the total usage of comprehensive digital twins that harness simulations in near real-time to instruct all aspects of a system’s lifecycle. Simulation driven, model-based development when harmonized into a comprehensive digital twin will enable dramatic breakthroughs in program efficiency, quality, and innovative capabilities. Because of the dramatic increase in ability of the engineering teams to cycle through massive numbers of virtual design and operational scenarios leading companies are enabling dramatic improvements in optimization and deep insights into the function of the designed systems early and throughout ongoing design changes.
This will extend to every aspect of the lifecycle, first into manufacturing and sustainment/service, mission development and operations health monitoring. We can envision a future where every operation of a system/vehicle is both simulated before it happens and after to assess the most efficient operation and the overall health of the system, safety of its occupants/environment. This can also have a significant impact on sustainability if the digital twin is harnessed to optimize operations for minimum energy consumption and maximize life of the system.
RELATED: Cybersecurity in the Air: Addressing Modern Threats with DO-326A
Question 6 – How do you anticipate changing geopolitical conditions and regulatory demands influencing the development of next-generation aerospace and defense products? What strategies should industry leaders consider to remain agile and compliant?
Hilderman: Defense demands will only grow; Europe will need to greatly increase spending, and USA will need to counter increased China spending.
Bryczek: In the defense industry, meeting the mission requirements and providing capabilities quickly to the warfighter trumps regulatory safety compliance requirements. Since there is no “certification” activity as in civilian aerospace systems, there is less burden on development practices. I see very little regulatory changes that will greatly impact defense. On the civilian side, regulations continue to evolve still very slowly. Leaders need to remain agile with their business strategy and align with what the political conditions offer. If there is a way to morph your product to a different market; then be bold and make it happen.
Mulcahy: With the rise of more worldwide conflicts, especially in Europe and the Middle East, more countries are spending more of their GDP on defence spending.
In today’s world, defense now goes more than just weapons, but also into space, cyber security and of course ensuring systems are secure and reliable.
New threats require new solutions to help mitigate these threats. That’s where more companies will develop more solutions and start-ups will emerge.
We often hear of a grey area in the UAV world in terms of regulations, but with more focus on the SORA (Specific Operations Risk Assessment) / SAIL (Safety Assessment Integrity Level,) it will be interesting to see what standards emerge with more civilian/military uses for UAVs for both attack and defence purposes.
Macias: As the broader world adjusts to an accelerated rate of change, we will need to introduce innovative solutions faster and leverage solutions from global partners. This will demand secure, virtual collaboration methods, new ways of joint development while protecting IP and data security, and new standards for safety, communication, and joint operations. Industry leaders should continue to seek secure, virtual collaboration methods that can bring global/multi-disciplinary teams together and ensure harmonized efforts.
Question 7 – Are there any additional insights you have regarding predictions, events, or trends you anticipate happening in 2025 and beyond?
Hilderman: Demand for engineers is greater than supply and this will only worsen.
Mulcahy: More innovation in the UAV / Advanced Air Mobility (AAM) markets, but also more focus on the security of these solutions and the supporting infrastructure and regulations. It will be interesting to see how this combines with AI to develop fully autonomous and intelligent UAVs for civilian/military use cases. The need for larger companies to become more digital, deliver faster, and streamline operations will continue to be a focus.
Macias: The recent past has shown that innovative concepts are accelearating at such a high pace that we are continuously being surprised and amazed at new possibliities and impacts. The industry as a whole must seek faster awareness, greater agility and increase creativity to respond, leverage, and compete in the face of such dynamic times for Aerospace and Defense systems.
- 2025 Expert Predictions for Medical Device & Life Sciences: Innovations in Patient-Centered Care and the Future of Medical Device Design - January 9, 2025
- Jama Connect® Enables DevSecOps Through Robust API and Integrations That Connect All Activity to Requirements - January 7, 2025
- 2025 Expert Predictions for Aerospace and Defense: AI, Sustainability, and the Next Frontier - January 2, 2025