
8 Do's and Don'ts for
Writing Requirements
Every word matters when authoring requirements.
Something as simple as adding an adverb or using
“should” instead of “must” can create ambiguity that
confuses engineers and sets a project back.

Let’s see how you can write requirements that are
both clear and traceable across the product
development lifecycle.

DO: Use a Requirements Template

A template gives consistent structure to requirements.
It can be in a user story or systems engineering format, either of
which provides uniform construction to support easier testing.

DON’T: Use Adverbs
“Quickly,” “easily,” and other adverbs don’t
provide clear guidance to testers. Instead,
focus on acceptance criteria that
are testable and measurable.

DO: Use Active Voice
and Specific Adjectives
Use active voice verbs. For instance, “the car shall
withstand...” is clearer than “the car shall be enhanced to
withstand…” Also select specific adjectives instead of standbys
like “user-friendly” and “compatible.”

DON’T: Mix Design
Specifications into
Requirements
When possible, aim to remove design from
requirements, as the latter describe a need
while the former constitute a response to
that need. Design-free requirements
give engineers more freedom.

DO: Standardize your Language

The English language contains numerous words
with similar meanings in everyday usage. Settle on a
few to represent agreed-upon meanings, like “shall” for binding
high-priority requirements.

DON’T: Be Ambiguous
 Requirements are often ambiguous
because they’re too general, e.g., “the
device shall be easy to use.” Get more
specific, whether that means setting a
clear benchmark or naming a specific color.

DO: Regularly Review
Requirements with Stakeholders

Reviewing your requirements with others is a
reliable way to ensure shared understanding.
Collaborating within a real-time platform lets teams exchange
feedback, ensure testability, and minimize rework.

DON’T: Rely on Negative
Requirements Statements

Negative statements can introduce
ambiguity, since there are virtually infinite
things that any system will “not do” en route
to fulfilling its positive requirements. Check
negative statements carefully and
use them sparingly.

www.jamasoftware.com

